Allogeneic CAR-T Cells with Multiple Therapeutically Favorable Edits Can Be Created Efficiently Using CRISPR/Cas9

M. Allen1, M. Dequeant1, H. Dar1, J. Sagert1, D. Kalaizidis1, D. Henderson1, Z. Padalia1, A. Porras1, S. Spencer1, E. Huang1, T. Nguyen1, S. Chou1, D. Mui1, K. Maeng1, S. Police1, C. Finch1, L. Klein1, T. Ho1 and J. A. Terret1
1CRISPR Therapeutics, 610 Main Street, Cambridge, MA 02139

Abstract

Remarkable therapeutic benefit of CAR-T cells has been observed for hematologic tumors across multiple indications and with different antigen targets. The most advanced systems are lentivirus-derived autologous CAR-Ts as seen with the approval of Kymriah and Yescarta and the reported clinical trial data from CAR-T cells targeting BCMA. Despite these significant advancements, there are (as ever in oncology) scope for improvement; in this case around supply and consistent product as well as the usual efficacy and safety profiles. Allogeneic (off-the-shelf) CAR-T cells created using gene editing techniques offer the opportunity to improve all of those aspects. Indeed TALEN based gene editing has been used to generate "off-the-shelf" CAR-T cell therapeutic targeting CD19. However, the CRISPR/Cas9 system provides an unprecedented opportunity to rapidly improve the properties of CAR-T cell therapeutics to treat solid tumors. Using CRISPR/Cas9 gene editing, homology-based guide RNAs can be assayed for functionality within weeks so that the most relevant targets can be validated. Furthermore, T cells are very tolerant of multiplex CRISPR based editing, including knock-out and knock-in editing events. Here we show selection of multiple candidate T cell edits that improve T cell function without damaging T cell properties.

Figure 1: Allogeneic CAR-T Cells Produced with CRISPR/Cas9

CRISPR/Cas9 genome editing of T cells from healthy donors is used to produce allogeneic CAR-T cells. To prevent off-target expression is ablated by site-specific integration of an antigen-specific CAR construct into the TRAC locus by homology-directed repair after using CRISPR/Cas9 to introduce the double strand break. To enhance persistence of allogeneic cells, MHC I expression is achieved by disrupting the I2M gene. In addition, an edit to knock-out PD1, as well as a fourth edit (ESM1), are made to enhance the anti-cancer properties of the multi-edited CAR-T cells.

Figure 2: CRISPR Therapeutics Allo CAR-T Pipeline

Program: CRISPR Therapeutics Allo CAR-T Pipeline

Table: CRISPR Therapeutics Allo CAR-T Pipeline

<table>
<thead>
<tr>
<th>Program</th>
<th>Editing approach</th>
<th>Research</th>
<th>Engineer</th>
<th>Infant</th>
<th>Pediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRISPR</td>
<td>Single 20x20</td>
<td>GMP</td>
<td>Wholly owned</td>
<td>ADG KIR</td>
<td>NMD</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Single 20x20</td>
<td>GMP</td>
<td>Wholly owned</td>
<td>ADG KIR</td>
<td>NMD</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Single 20x20</td>
<td>GMP</td>
<td>Wholly owned</td>
<td>ADG KIR</td>
<td>NMD</td>
</tr>
<tr>
<td>CRISPR</td>
<td>Single 20x20</td>
<td>GMP</td>
<td>Wholly owned</td>
<td>ADG KIR</td>
<td>NMD</td>
</tr>
</tbody>
</table>

Figure 3: High Efficiency Multi-Editing by CRISPR/Cas9 to Produce Anti-BCMA CAR-T Cells

Multi-editing results in decreased expression of TRAC and MHC I as well as high CAR expression. For both the double KO (TCR β2M and triple KO (TCR β2M/PD1), more than 80% of T cells possess all 3 (TCR β2M/PD1) or all 4 (TCR β2M/PD1/CD70) desired modifications. The CD4/CD8 ratio remains similar after multi-editing. Anti-BCMA CAR-T cells remain dependent on cytokines for growth after CRISPR/Cas9 multi-editing.

Figure 4: Multi-Edited Anti-BCMA CAR-T Cells Show Improved Anti-Cancer Properties

(A) Anti-BCMA CAR-T cells efficiently and selectively kill the BCMA-expressing multiple myeloma cell line MM.1S in a 4-hour cell kill assay, while sparing the BCMA isogenic line K462. Differences in between double (TCR β2M) and triple (TCR β2M/PD1) KO CAR-T cells are notable at lower T cell concentrations. (B) The CAR-T cells also specifically secrete the T cell activation cytokine IFN-γ and IL-2, which are upregulated in response to induction only by BCMA+. Cells, again, the triple KO outperforms the double.

Figure 5: PD1 KO Reduces LAG3 Exhaustion Marker Expression in Long-Term Cultured CAR-T Cells

Following 4 weeks of in vitro culture, triple KO (TCR β2M/PD1) anti-BCMA CAR-T cells show low expression of the exhaustion marker LAG3 relative to double KO (TCR β2M) anti-BCMA CAR-T cells, which lack the edit to eliminate PD1.

Figure 6: High Efficiency Quadruple Knock-Out Plus CAR Insertion by CRISPR/Cas9 to Produce Anti-CD70 CAR-T Cells with Enhanced Cytotoxicity

(A) Quadruple multi-editing results in decreased surface expression of TCR and MHC I, as well as high CAR expression. In addition, an edit to eliminate expression of PD1 and a fourth edit (ESM1) are achieved at high efficiency. More than 60% of T cells possess all 5 desired modifications (TCR β2M/PD1/CD70/CD84/CAR). (B) The CD4/CD8 ratio remains similar after multi-editing. (C) Triple KO (TCR β2M/PD1) anti-CD70 CAR-T cells remain dependent on cytokines for growth following CRISPR/Cas9 multi-editing. (D) Anti-CD70 CAR-T cells show potent killing activity against the CD70+ A498 renal cell carcinoma line. Quadruple KO CAR-T cells show higher potency than those with the triple KO at the lower effector-target ratios.

Summary and Conclusion

- Multi-edited antigen-specific CAR-T cells can be generated using CRISPR/Cas9 genome editing
- More than 60% of T cells possess all desired modifications, whether performing double, triple, or quadruple KO, plus CAR insertion.
- PD1 knock-out reduces expression of the exhaustion marker LAG3 in long-term in vitro culture of multi-edited anti-BCMA CAR-T cells.
- Both anti-BCMA and anti-CD70 multi-edited CAR-T cells:
 - Display antigen-specific effector functions
 - Have a similar CD4/CD8 ratio as controls
 - Maintain characteristic dependence on cytokines for growth, suggesting that no transformation has occurred as a result of the editing process.